Minimizing Thermal Variation Across System Components
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Abstract—Thermal overheating is a serious concern in mod-
ern supercomputing systems. Elevated temperature levels re-
duce the reliability and the lifetime of the underlying hardware
and increase their power consumption. Previous studies on
mitigating thermal hotspots at the hardware and run-time
system levels have typically used approaches that trade off
performance for reduced operating temperatures.

In this paper, we first show that in a large-scale system,
physical attributes cause an uneven temperature distribution.
We then develop a model to characterize the thermal behavior
of a complex system using various machine learning methods.
We propose to improve application placement by incorporating
thermal awareness into the decision-making process. Specifi-
cally, our system predicts the thermal condition of the system
based on application mapping and uses these predictions
to mitigate thermal hotspots without any performance loss.
We provide two versions of our prediction mechanism. On
a two-node configuration, these models achieve 72.5% and
78.8% success rates in their predictions, respectively. In other
words, the scheduling decisions of our models result in a task
placement that has a lower maximum average temperature.
Overall, the more aggressive scheme reduces the average peak
temperature by up to 11.9°C (2.3°C on average) without any
performance degradation.

I. INTRODUCTION

Thermal implications are becoming increasingly influen-
tial in determining the cost of operating a high-performance
computing (HPC) system. Furthermore, thermal effects are
one of the primary factors limiting achievable peak per-
formance. All major processor manufacturers correlate the
maximum expected performance with the thermal design
point (TDP). This metric represents the maximum amount
of heat and power that can be sustained by the system
during reasonably long execution intervals representative of
typical workloads, while only short-lived (on the order of mi-
croseconds) crossing over this threshold may be allowed. In
addition, increasing the operating temperatures reduces the
long-term reliability of CMOS-based ICs exponentially [1].

In addition to the general relevance of thermal effects
on performance and cost optimizations in all HPC systems,
emerging energy-efficient cooling paradigms bring new chal-
lenges. Commercial data centers and supercomputing centers
are under immense pressure to reduce their cooling cost and
carbon footprint. A developing response to this pressure is a
new paradigm allowing warmer inlet water temperatures for
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the liquid cooling commonly used in these systems. Several
HPC systems—including SuperMUC, one of the world’s top
ten most powerful supercomputers—already operate under
raised inlet coolant temperatures. These systems aim to
aggressively exploit the thermal headroom (i.e., guard band)
in the server chips. While tightly controlled systems can do
so with smaller risks, it is unclear how far the envelope
can be pushed unless the system is equipped with better
awareness of the energy and thermal optimization objectives.
All the system-level manifestations of thermal events—for
example, imbalance in node performances, increased failure
rates, and unpredictability—will only be exacerbated under
this new cooling paradigm. Therefore, system management
modules in HPC systems need to be more tightly involved
in thermal management and be equipped with thermal-aware
policies.

A complexity that arises in thermal management in large-
scale systems is the effect of physical properties on the
thermal behavior. For example, two identical CPUs on
different parts of the system will exhibit different thermal
responses. Hence, in this paper, we first demonstrate that
physical properties that affect thermal response need to be
incorporated into system-level decision making in an explicit
manner and with minimal overhead. Specifically, our study
indicates that a significant variation in thermal responses
exists among functionally equivalent subsystem components
(e.g., nodes, racks), which the system might otherwise view
as identical under the same workload conditions. In turn,
this varying thermal response can cause these seemingly
identical subcomponents to perform nonuniformly, contrary
to the abstract assumption of the system about these hard-
ware components. Our preliminary experiments on a two-
node HPC system (Intel Xeon Phi coprocessors) in fact
revealed that a difference of over 20°C can occur between
these two identical nodes although they are running the same
application. Such imbalance can cause thermal throttling,
which significantly degrades performance: our experiments
reveal that throttling even a single thread among 128-169
(the number depends on the application) threads results in a
31.9% average system performance degradation in our target
benchmarks.

To address the mitigation of thermal variation and thermal
hotspots, we first present a methodology for performing ther-



mal characterization of HPC systems through a combination
of empirical data analysis and machine learning models. Our
model is especially effective in discovering nonuniformities
in thermal responses across a system. We also demonstrate
how such a lightweight yet accurate model can be used to as-
sess the thermal quality of different task-scheduling schemes
and guide an optimal choice. Our thermal evaluation of
a representative state-of-the-art HPC system indicates that
different nodes within the system exhibit widely different
thermal responses to the same workload and cooling condi-
tions. This result shows that thermal modeling of a generic
computing node cannot simply be replicated and combined
to construct the thermal model of a large system. Hence,
we have sought to develop a method to model the inherent
variation within a target system as accurately as possible.

Another important goal of our study has been to develop
a lightweight model that can be derived quickly from avail-
able system-level parameters. Leveraging machine learning
methods, we have developed a model for predicting system
temperatures. We demonstrate the effectiveness of this model
for task scheduling in our target system, which has two Intel
Xeon Phi cards. Specifically, we consider the placement of
two random applications on the two different cards. Our
model predicts the thermal response of the two possible
allocations and then selects the one that results in lower
average temperature for the hottest component in the system.
We provide two versions of our prediction mechanism.
Our results show that our model is capable of scheduling
tasks with awareness of thermal impact, identifying the
thermally optimal schedule (under the same performance)
with a success rate of 72.5% and 78.8% for each version,
respectively. We show that these scheduling schemes guided
by our model can decrease the peak temperature of the
system by as much as 11.9°C (2.3°C on average).

The rest of this paper is organized as follows. Section II
gives an overview of related work. In Section III, we
present our motivational experiments. We present our ther-
mal characterization methodology and the resulting model
in Section IV. Section V presents our experimental results.
We discuss possible future directions in Section VI and
summarize our main findings in Section VII.

II. RELATED WORK

Several prior studies are concerned with guiding core-
level DVFS schemes with direct physical sensor feedback
or via prediction models [2, 3, 4, 5]. Other studies focused
on system management tasks such as task migration, load
balancing, etc. [6, 3, 7, 8, 9, 10, 11]. Choi et al. investigated
thermal-aware temporal and spatial mitigation schemes [6].
They conducted experiments on a POWERS system, which
allowed them to access the 24 on-chip thermal sensors at
every OS scheduler tick. They modified the task scheduler
in Linux to receive feedback from physical sensors and
demonstrated their hot-spot mitigation technique. However,

their scheme relies on direct feedback from a large network
of well-calibrated sensors, which POWERS provides, but not
many other systems.

Ramos and Bianchini [8] proposed a model which predicts
the thermal impact of a given thermal management policy.
Their model is based on heat transfer relationships and
therefore requires detailed knowledge of the underlying
hardware system and its thermo-mechanical properties.

Moore et al. [12] proposed a framework to build a thermal
model for a datacenter using readings taken from external
temperature sensors, server instrumentation, and computer
room air conditioning units. Their framework leverages a
neural network based method. Ultimately, this model is used
to provision a power budget across the datacenter and it does
not have a notion of real application workloads. Hence, the
model has no learning component for the workloads. The
model is only trained to learn the system, unlike our model,
which is capable of inferring both the system and the actual
applications.

To the best of our knowledge, our study is the first
to use a Gaussian process to create a temperature model
for a computer system. Also, most previous works that
developed prediction methods do not target a true HPC
system or HPC workloads. Those that study thermal-aware
management for HPC systems, on the other hand, utilize
only limited physical thermal sensor feedback or require
detailed knowledge on the thermo-mechanical properties of
the system. Our framework provides a novel application
of the Gaussian process based machine learning method,
which solely leverages system status that is accessible to
the operating system and no physical or domain-specific
information about the system.

Furthermore, our thermal characterization framework ex-
tends beyond the level of processor cores and is capable
of characterizing higher-level system components, such as
nodes. On the other hand, most previous works focus solely
on predicting and mitigating within-core and across-core
thermal variation.

III. MOTIVATION: THERMAL ANALYSIS OF A HPC
SYSTEM

Our work has been motivated mainly by a detailed
thermal analysis of representative HPC systems. We have
thermal analysis data collected from three systems: (1)
inlet coolant temperature data across nodes in the Mira
supercomputer [13], (2) a thermal map from a two-node
system based on Intel Xeon Phi implemented as PCle
cards, where each card contains one processor with 61
cores and 4 hardware threads per core, and (3) core-level
temperature data from a two-package Intel Sandy Bridge
processor configuration. The data from Mira was provided
to us from a third party [13]. We collected the data for
the other two systems ourselves, using microbenchmarks.
Figure 1(a) illustrates the inlet coolant temperature across
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(b) IR camera image of two Intel Phi Coprocessor cards
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Figure 1: Temperature variation in different HPC systems: Figure la shows the inlet coolant temperature variation on Mira supercomputer. Each cell represents a machine, each
row is a rack of the cluster, and the colors represent the temperature of inlet coolant. Lighter color indicates higher temperature. Variation and presence of hotspots are clearly
visible.Figure 1b shows the temperature variation of two Intel Xeon Phi Coprocessor cards running the same workloads.Despite executing the same workloads, thermal variation
across cards is significant. Figure 1c shows the temperature variation on two Intel Sandy Bridge processor package configurations, both within and across packages.

nodes in the Mira supercomputer. Lighter color indicates
higher temperature. Figure 1(b) is an infrared image of the
two Phi cards both executing the same FPU microbenchmark
workload. Figure 1(c) plots the thermal behavior of all cores
in the system, eight cores in package O and another eight in
package 1. The figure also depicts the average temperature
and standard deviation among all cores within package O
and package 1, respectively.

The variation in thermal behavior is significant in all
three cases. In the Intel Xeon Phi-based system, we observe
over 20°C difference in temperature between the hottest
and coldest cards under the same workload. Furthermore,
the upper card is always consistently hotter than the lower
card. This specific system has also served as our testbed
for the remainder of our experiments in this study. In the
Sandy Bridge system, a clear variation in temperature occurs
among the eight cores within the same package as well
as between the two packages. Thermal variation is largely
present in different systems, as well as at different levels of
the system, not only among individual cores, but also across

nodes; and there are thermal hotspots that largely deviate
from the average behavior of the systems, causing imbalance
in performance, excessive power consumption, and threats
to reliability.

The distribution of the hotspots and the variation in
peak temperature across different system components can
be attributed to two factors. First, it depends on the physical
attributes of the hardware components. For example, pre-
sumably, the reason for the upper card in the Intel Xeon
Phi-based system being hotter than the lower card is that
the upper card intakes hotter air. Second, the distribution
depends on the placement of the workloads. To demon-
strate how placement can affect hotspots, we performed
an experiment on our testbed. We ran every possible pair
of applications from a benchmark set on the two-node
system. We performed two runs for each pair, swapping the
placement of the applications between the top and bottom
card. We found that between two alternative mappings of a
pair of applications to the two cards, the difference between
the peak observed temperature in the system can be as high



as 11.9°C. Clearly, some mappings incur significantly more
thermal stress than others.

These observations motivated us to design tools for
making thermal-aware decisions, mitigating the problem of
thermal variation and reducing the hotspots in the sys-
tem. Specifically, we present here a new framework to
characterize the thermal behavior of a HPC system that
is especially geared toward capturing thermal hotspots at
system-level components. Then, we use this thermal model
to perform task scheduling on a HPC system with multiple
nodes of the same configuration. Our aim is to identify the
best assignment of tasks to nodes such that the average
temperature of the hottest system node is minimized.

IV. MODEL FOR PREDICTING SYSTEM TEMPERATURE

We have developed a temperature prediction model for a
HPC system. Our model is designed to be reflective of the
physical and architecture-driven sources of variation.

Our methodology comprises five steps:

1) For a specific machine in the system (e.g., a particular
node in the cluster), we develop a thermal prediction
model. Specifically, we run a series of benchmarks on
that machine and collect data on their performance
related characteristics (such as cache misses, fraction
of floating-point instructions). These properties are
largely correlated with the application’s own nature.
Hence, they are invariant as long as the architectural
configuration of the machine remains the same. We
also collect the thermal response of these benchmarks
on this machine during these runs.

2) Using the cumulative data collected from all bench-
marks, we generate a machine-specific model that
maps representative application characteristics and an
initial physical state to a predicted temperature ex-
pected to manifest on that machine after a certain time
interval.

3) Independently, for the same physical system, for each
actual target application of this HPC system, we
collect a time series set of samples of application-
dependent properties. These are kept as logs by the
system software.

4) When an application has to be scheduled on the
HPC system, we use the machine model from Step
2 (which is generic and was built without any infor-
mation directly from this particular target application)
and application characteristics of this specific target
workload preprofiled in Step 3 to predict the operating
temperature.

5) Using the predicted operating temperatures, we can
compare alternative task assignments with each other,
and the system software will be provided with the
suggestion for an assignment that is expected to result
in lower average temperature for the hottest node.
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Figure 2: (2a) Online temperature predictions of our model (blue solid line) versus
actual temperature sensor readings (red dotted line). (2b) Static temperature predictions
of our model (blue solid line) versus actual temperature sensor readings (red dotted
line).

Our framework is designed to be general so that it can
apply easily to a different architecture as well as at a
different level of granularity (individual chip, node, rack,
etc.). Ultimately the output of our model is the thermal
response of the system. Our model can be used in an online
fashion to predict temperature from application characteris-
tics sampled by the system at run time. A thermal response
generated by our model used in online mode is depicted
in Figure 2a. In this figure the thermal response derived
from actual temperature sensors on a node (dotted line) are
plotted along with the predicted response generated by our
model (solid line). We can see that the model has high
accuracy (less than 1°C difference on average) when used
online. Our model can also be used statically to assess
thermal peaks in steady-state that would result from a given
task assignment. Static prediction is what we have mainly
focused on in this work in order to aid static task assignment
decisions. In this usage model, our prediction is not intended
to calculate a spontaneous thermal response with absolute
accuracy. The most important role for our model is to predict
steady-state behavior as accurately as possible. Also, the
model should be capable of tracking significant fluctuations
along a longer time scale. The output of our model when
used statically is illustrated in Figure 2b. As one can see,



our model successfully captures long-term fluctuations and
the steady-state behavior. In this study, we chose to first
focus on evaluating the effectiveness of a universal model
in aiding a static task scheduler. Dynamic scheduling aided
by our model would be feasible as far as the accuracy of
the temperature prediction goes. However, the effectiveness
of the resulting dynamic scheduling, including migration
overheads and the like, requires a further careful study. We
plan to investigate this avenue in our future work.

A. Construction of the Modeling Framework

Construction of our model entails two main activities: (i)
collection of data from various sources as described in Steps
(1) and (3) above, and (ii) construction of a thermal model.

For a given system, we collect a set of features at a time
t from variety of sources, including hardware performance
counters, temperature sensors, and kernel counters. Some
of these features are highly correlated with application
characteristics. These features do not change significantly
when running the application on different nodes of the
system. We denote these features as application features,
and we denote the values of these features at time ¢ as a
vector A(t).

The remaining features are more strongly correlated with
a node’s physical condition. Even while running the same
application, these features can vary drastically across nodes
depending on each node’s cooling conditions, location, and
so forth. For example, temperature sensor readings are in
this category. We refer to these features as physical features
and denote them as a vector P(t). In Section V, we provide
a full list of these features.

Our framework uses a set of representative benchmark
applications to characterize a node and obtain a machine-
specific model for that node. For the entire benchmark
set, application and physical features are collected for a
sufficiently long execution period. Using the combined ap-
plication and physical features, we then train a machine
learning model to represent the thermal behavior of this
node. This model reflects a node’s thermal response com-
pletely independent of any thermal coupling with other
nodes in the system. We refer to this model as a decoupled
model. As we decoupled thermal interference between the
nodes, this modeling method suits large scale system best.

We leverage a machine learning method to generate this
model. We will further elaborate on the derivation of this
model in Sections IV-B and IV-C. Basically, this model will
be embodied in the form of a function f; generated for given
node j, such that

P;(i) = f;(A(i), A(i = 1), P(i — 1)). (1)

In addition to generating the prediction model the frame-
work also involves extraction of representative features from
the actual workload set of the HPC system. Each target
application is run on the node, and its application features are

collected. We set the length of the profiling run to ensure that
each application reaches well beyond its sections of interest.
At the same time, this duration is set to be long enough for
the system to reach its thermal steady-state.

The resulting temperature prediction model is then used as
follows. The task scheduler would be considering assigning
an application to a specific node in the system at some
point in time. At that instant, our model is invoked. It
receives the representative preprofiled application features
of this application in the form of a series of samples
(A(1),A(2),...,A(N)). It also receives from the system
the state of the initial physical features of the node. It then
iterates through the time series of the preprofiled data and
at each step makes a temperature prediction. In this way,
the model generates the expected thermal response over a
period of time.

Note that a node’s thermal response model is strictly
specific to the node’s own physical properties. As far as
applications are concerned, the model uses general perfor-
mance indicators from a representative benchmark set. The
actual workloads that will be deployed on the node are not
part of this data. The same universal model is used for
any and all applications that may be deployed on this node
henceforth.

In the abovementioned usage mode, just as with the
training of the model, the prediction is performed without
requiring or assuming any knowledge about the thermal or
performance state of any other node in the system. As an
alternative, both the training stage of the machine-specific
models and the actual predictions can be provided with
additional information on the activity of nearby nodes to
reflect potential thermal coupling. We refer to this prediction
method as the coupled method.

Training for decoupled models and execution of de-
coupled prediction is highly scalable. On the other hand,
introducing coupling information will require collection of
features from one application or node while mapping an-
other paired application onto all nearby nodes in different
combinations. Leaning toward decoupled methods in general
is a necessary trade-off when we attempt to model thermal
responses within a large-scale system, since scaling issues
will dominate. There is also another intuitive reason that
the decoupled modeling and prediction methods will fare
well in practice, especially for guiding task scheduling.
Intuitively, a partial ordering should exist across applications
as well as system nodes in terms of relative expected
location of a thermal hotspot. Hence, even if a strong
thermal coupling exists between system nodes, being able to
understand the ordering of applications and the susceptibility
of system nodes should be sufficient to provide thermal-
aware scheduling mechanisms. In fact, our results show
that the accuracy of our decoupled method is minimally
improved by considering coupling between system nodes.

Figure 2b illustrates how this approach works. As dis-



cussed earlier, the model performs static predictions. In the
early phases, the prediction’s absolute values do not nec-
essarily match the real thermal state closely. Nevertheless,
we observe that the predictor is successful in identifying the
trends (i.e., the instances of dramatic jumps in temperature).
It also is accurate in its prediction of the peaks and steady-
state thermal conditions.

B. Evaluation of Alternative Modeling Approaches

The effectiveness of our framework largely depends on
how well the function f described in Equation (1) can
capture the thermal characteristics of the system. Note that
we make no assumption on any detailed knowledge about
the underlying system. For instance, our models are unaware
of placement of nodes (e.g., which card is on top, which card
is near the cooler air flow) and the geometry of the system.
Similarly, our model does not make use of any domain-
specific knowledge pertaining thermal modeling. In other
words, our model has no knowledge of the thermal transfer
properties of the materials involved. The model operates as a
simple mapping function between features that are accessible
to an operating system’s kernel and the expected temperature
at a node. This makes machine learning methods a natural
candidate for our purposes. To evaluate a large number
of available machine learning methods efficiently, we used
WEKA [14] to explore various regression methods.

Our main evaluation criterion was how well each method
can predict the temperature for a given state of application
features dt seconds into the future. Figure 3 presents our
evaluation of several methods in terms of mean absolute
error in prediction versus the length of the prediction win-
dow. We have tested these methods to predict as far as
25 seconds into the future. From Figure 3, we observe
that, as expected, for all models the prediction errors tend
to grow as the prediction window extends farther into the
future. In addition, we observe that some of the techniques,
such as neural networks and Bayesian networks, experience
instabilities. Linear regression models exhibit acceptable
performance, particularly for the shorter prediction windows.
Overall, the Gaussian process, among all the methods, has
the best prediction accuracy until the prediction time window
reaches 25 seconds.

C. Prediction Model Using a Gaussian Process

As a result of our investigation described in Section IV-B
we chose the Gaussian process [15] method to generate
an approximation of f. A Gaussian process is a stochastic
process of a set of random variables (X7, Xo,...), where
any subset of these variables constitute a joint Gaussian
distribution.

We assume that any subset of elements of
the physical attribute vectors in our problem
(P(i1), P(i2),..., P(in), P(in+1)) similarly has a
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Figure 3: Performance of different machine learning methods when predicting future
temperatures.

joint Gaussian distribution:
(P(i1), P(i2), ..., P(in), P(int1)) ~ N (0, K), (2

where K € R(tDx(n+1) jg the covariance matrix. The
selection of 0 as the mean of the Gaussian distribution is a
common choice. The elements of this matrix are computed
by a kernel function k:

KU® = k(X (i5), X (i1,)),

X(ij) = (A(i5), A(i; — 1), P(i — 1)), 3)
X (ix) = (A(ix), A(ix, — 1), P(i, — 1))

The kernel function essentially evaluates the
correlation  between  two  samples X (i;) and
X (ix) and populates the covariance matrix. For
a set of observations P(i1),P(i2),...,P(i,) and

X (i1), X (i2),..., X (in), X (int1), the model then

generates the expected value of P(i,y1) (i.e., the
prediction) as follows:

E(P(n+ 1)|X7 P7XN+1) - K<Xin+1aX)K(XaX)71P7
whete, P = (P(i1); P(i2); ..; P(in),

X = (X(i1); X (i2); .. .; X (in))- @

Note that K (X, X)~!P can be pre-computed and reused
each time a prediction is made. Hence, the matrix inversion
step of this pre-computation occurs only once.

Essentially, X and P constitute the training set for our
model, since they are the observations that are used to
estimate P(i,1). Hence, the temperature prediction model
f that we aimed at can be expressed as follows.

f=EP(int1)| X, P, (Aint1), Alint1—1), P(iny1—-1)))
)
D. Complexity Analysis and Runtime Overhead

The main contributor to the computational complexity of a
Gaussian process is the matrix inversion at the precomputing



Model # 7120X
# of cores 61
Frequency 1238094 kHz
Last Level Cache Size 30.5 MB
Memory Size 15872 MB

Table I: Intel Xeon Phi coprocessor configuration.

phase. This inversion operation has a time complexity of
O(N3) and is executed only once. Each subsequent evalu-
ation of f has a time complexity of O(MN), where N is
the total number of samples in the training set and M is the
number of features of each sample.

To reduce the training and prediction time, we use a
variant of the Gaussian process called the subset data
Gaussian process. For a large data set, we randomly select
Nmax samples from the data set, thus limiting N = Nyx.

When attaching this model to the system, the model is
precomputed offline. Hence, it needs only to simulate the
system status. This simulation involves two steps:

o Gathering the current system state P(1). This step
requires I/O queries to all the feature sources. We
are using 30 different sources, and this incurs a total
communication cost of 22 ms.

o Simulating the system for a given time duration. We
simulate the system for five minutes. On average,
this costs 0.57 ms per prediction and 344.1 ms per
application (performing a total of 600 predictions).

V. EXPERIMENTAL RESULTS

We setup our test environment on an Intel workstation
with two Intel Xeon Phi coprocessors. The Intel Xeon Phi
coprocessor is a promising platform featuring up to 61 cores
and 244 hardware threads per chip. The theoretical peak
double-precision performance of a 61-core Phi coprocessor
is 1.2 teraflops. Each coprocessor runs its independent
operating system, and communicates with the host system
through the PCle interface. There is a System Management
Controller on the same board along with the coprocessor, and
it monitors a variety of on-board sensors. Since our system is
comprised of two nodes (cards), we denote the bottom card
as “mic0” and the top card as “micl”. The configuration of
the Phi coprocessor is shown in detail in Table I.

Table II shows the full list of benchmarks that were used
to construct our thermal model and their configurations.
We also developed a kernel module to collect all available
system features. The kernel module performs the sampling at
a fixed interval. The sampling has a runtime overhead of 20
ms; to balance this cost, we have chosen a sampling period
of 500 ms. For cumulative features, such as instruction
count, the module records the increase since the last interval.
For instantaneous features, the module records the reading
of the attribute. Table III presents the list of the features we
collect and their classification. The die temperature feature
is the one that our model ultimately predicts.

app

data size,
parameter

description

from Argonne

ational Laboratory

XSBench default compute cross sections using the continuous energy
format
RSBench default compute cross sections using the multi-pole repre-

sentation format

from the NAS Parallel Benchmark

BT C Block Tri-diagonal solver

CG C Conjugate Gradient, irregular memory access and
communication

EP C Embarrassingly Parallel

FT B Discrete 3D fast Fourier Transform

IS C Integer Sort, random memory access

LU C Lower-Upper Gauss-Seidel solver

MG B Multi-Grid on a sequence of meshes

SP C Scalar Penta-diagonal solver

from the Scalable Heterogeneous Computing Benchmark

FFT -s 4 Fast Fourier Transform
GEMM -s 4 General Matrix Multiplication
MD -s 4 Performance test for a simplified Molecular Dynam-

ics kernel

miscellaneous applications

BOPM default Binomial Options Pricing Model
HogbomClean | default Hogbom Clean deconvolution
DGEMM default Double precision GEneral Matrix Multiplication by

Intel

Table II: Applications used for our experiments.

name [ description
App Features
freq frequency
cyc # of cycles
inst # of instructions
instv # of instructions in V-pipe
fp # of floating point instructions
fpv # of floating point instructions in V-pipe
fpa # of VPU elements active
brm # of branch misses
11dr # of L1 data reads
11dw # of L1 data writes
11dm # of L1 data misses
11im # of L1 instruction misses
12rm # of L2 read misses
mcyc # of cycles microcode is executing
fes # of cycles that front end stalls
fps # of cycles that VPU stalls
Physical Features
die max die temperature from on-die sensors
tfin fan inlet temperature
tveep VCCP VR temperature
tgddr GDDR temperature
tvddg VDDQ VR temperature
tvddg Uncore power
tfout fan outlet temperature
avgpwr average power
pciepwr PCle input power reading
c2x3pwr 2x3 input power reading
c2x4pwr 2x4 input power reading
VCCppwr core power
vddgpwr uncore power
vddqpwr memory power

Table III: List of features collected from the system.




As we include temperature sensors into our model, the
model can be trained to capture the processor temperature
as well as the ambient temperature, which also plays an
important role to thermal models [16].

We run each application for five minutes. If the application
finishes in under five minutes, we restart it. If the application
runs longer than five minutes, we terminate it. We have
confirmed that all applications perform a major portion of
their main body of computation within this duration. In our
hardware configuration, five minutes is sufficient time for all
the applications to run through their setup phase and reach
the steady-state behavior and temperature.

A. Model Selection

We build our model based on a Gaussian process as
described in Section IV-C. The core part of selecting a good
Gaussian process model is the selection of kernel functions.
Intuitively, the kernel function characterizes the inherent
property of a problem. We have tested different types of
kernel functions, and finally chose the cubic correlation
function:

n
k(xy,22) = H maxz (0,1 — 3(9(%51) - océl)))2
i=1 (6)
+2(0(xy” —3))°)

The 6 we chose is 0.01. For our experiments, this value
resulted in a good prediction accuracy.

When training a model, we randomly select a subset of
500 samples from all the available samples to limit the
computation costs of the model. We limit the total number
of samples used for training to reduce both time and space
complexity of the model as described in Section IV-D. The
number Np,x = 500 is selected, because it provides a good
trade off between prediction accuracy and model complexity.
We must highlight that in all our experiments, the model
is trained using samples from all applications except the
target application; in other words, the training model never
includes samples from the application(s) used in testing.

We use symbol A, x y(j) and P; x,y(j) to denote the
application and physical features of the jth sample we
collected on micz, when running application X on micO and
Y on micl. Note that when we use A as the application
profile, we only pick A; x nonr as when we do the
profiling, and do not run any applications on the other node.
The selection of ¢ depends on the node our model is trained
for, and is discussed in the following sections.

B. Predicting Application Temperature

We first test the decoupled method: for each applica-
tion X, we train the model for micO using samples from
all applications except X. Then, we test the model by
performing temperature prediction for application X, using
X’s preprofiled application features collected on micl. We
report the individual peak temperature error and average

12

Il Average Temperature
H Max Temperature

Error in Temperature (C)

£ c o wv a [a] c [
ScEB8BE®2Q2HEZ9F5E 8
[T w o L 5 &
m | o] mg‘-”g
2 2 £ 0z

=]

f=

(=}

T

Applications

Figure 4: Temperature prediction error of the decoupled method.

temperature errors of our model in Figure 4. The error of
our model is computed by taking the difference between our
model’s prediction for a time instant and the thermal sensor
reading collected from that node for the same instant.
We have to highlight a few properties of this experimental
setup:
o When predicting for application X, no information of
application X is used during the training of the model.
o After training, while we are predicting the temperature
for X running on mic0, we actually use the application
features of X collected on micl, in order to validate our
assumption that application features remain the same
across different nodes.
o For each application, the features are collected only
once statically. These logs are repeatedly used for
predicting temperature in different machines.

We observe that our model can predict the temperature
very accurately for most of the applications. The average
error is 4.2°C. We believe that we can further improve the
prediction accuracy of our model by incorporating more
applications during training to cover extreme cases. As we
will see in the following section, when it comes to task
placement problems, some bias error can be canceled out
and lead to correct scheduling decision.

C. Application Placement Guided by Temperature Predic-
tion

We test our model in a job assignment scenario: given two
applications X and Y, which placement results in lower peak
temperatures, (X — mic0O, Y — micl), or (Y — mic0, X
— micl)? Since the two cards have the same architectural
configuration, the applications will have the same perfor-
mance on them. However, different placement can result in
different thermal properties due to the asymmetric physical
placement of the two cards. Our goal is to minimize the



average temperature of the hotter card:

_ . (temp)
Xo, X1 = argmin  max{mean(P; y " ),
Xo=X,X;=Y
orXo=Y,X1=X 7

(temp)
77166”1(131,)(0,)(1 )}

However, in practice, we cannot get P before we actually run

the application. We use the prediction P as P in Equation 7.

We let

Txy = max{mean(ﬁ(()t;?g) ), mean(ﬁgtﬁ?f? )}

Ty x = max{mean(pét’;in;)), mean(pﬁ;’g))},

Txy = max{mean(P((figg)), mean(Pgt,_ethlg))}v

Tyx = max{mean(Pét’(;r;?)), mean(Pgt’;';?))}.
If TXY — TYX and Txy — Ty x have the same sign, the
model makes a prediction that can reduce the maximum
average temperature of a specific application pair.

The runtime overhead of our sampling method is negligi-
ble because each prediction only requires one-time sampling
of the initial value of the physical features.

For the placement that assigns X to micO, and Y to
micl, we use the model fjy, which was trained without any
knowledge of X to predict the temperature when running X
on mic0, and use the model f;, which was trained without
any knowledge of Y to predict the temperature when running
Y on micl. More specifically:

Py, x,,x, = Po,x,,NONE ®

Py x,x, ~ PiNONE,X,

We plot Txy — Tyx versus T'xy — Ty x using the
decoupled method in Figure 5. From Figure 5, we can see
that TXY —Ty x has a positive correlation with T'xy — Ty x.
Furthermore, we found that 72.5% of points fell into the
first and third quadrants, which means our model made a
correct decision, and hence, in 72.5% of the cases identified
the better placement among the two possible options. We
define this as the success rate of our model. The decision of
our model results in 2.1°C lower average temperature than
the opposite placement on average. However, if we look
at the pairs that have better scheduling opportunities, i.e.
|Txy — Ty x| > 3, our model has a 86.67% success rate.
Furthermore, if we look at all the pairs where our model
makes the wrong prediction, the average of |Txy — Ty x|
is as low as 1.6°C. Hence, these are task placements where
either configuration would be equally efficient.

The advantage of the decoupled method is its scalability.
The model training and testing of each individual node is
independent of other nodes.

We also experimented with the coupled method. In this
method, we train a general model taking both micO and micl
into consideration. Specifically, the model uses features from
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Figure 5: Correlation between the actual and predicted thermal variation while using
the decoupled method

both micO and micl as inputs, and outputs the predicted
state of micO and micl. For an ordered pair of applica-
tions (X, Y), we use all the samples (Ao x,v, A1 x,v)
and (Py x,v,Pi,x,y) to obtain a model f, where X,Y €
{All of our applications} \ {X,Y}. Then, we compute P
by:

(Po,x,y (1), P1,x,y (1)) = f((Xo,x,v (1), X1,x,v (1)),
(Xox,y(i—1), X1 xy(i — 1)),
(Po,x,y (i — 1), P1xy (i — 1)))
(Po,xy(1),P1xy(1)) = (Poxy(1),P1xy(1)) ©)
We plot TXY — TYX versus Txy — Tyx in Figure 6.
From Figure 6, we can see that TXY — Ty x has a positive
correlation with T'xy — Ty x. Furthermore, we found that
78.33% of points fell into the first and third quadrants, which
means our model made a correct decision, and the overall
success rate of our model is 78.33%. The decision of our
model results in 2.3°C lower average temperature than the
opposite placement on average. However, if we look at the
pairs that have better scheduling opportunities, our model’s
success rate is 88.89%. Furthermore, if we look at all the
pairs where our model makes the wrong prediction, the
average of temperature difference is as low as 1.3°C.
As the coupled method utilizes more information, it has
a slightly better performance than the decoupled method.
In summary, both methods identify the best case when
the temperature gains are maximum, and choose the better
placement scheme yielding an average of 11.9°C lower
average temperature than the opposite placement scheme. In
addition, we also evaluated the optimal solution that could
be obtained from an oracle scheduler. The optimal task
schedules would result in 2.9°C lower average temperature
than the opposite placement on average.
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Figure 6: Correlation between the actual and predicted thermal variation while using
the coupled method

VI. FUTURE WORK

The accuracy of the prediction methods can be improved
further. One item we are planning to improve is the guided
selection of subset data for the training set. Currently we
do a random selection. However, we can select the samples
according to their representativeness, making the dataset
cover more cases so that it can predict better.

The next major step is to apply the same method to other
architectures, or a higher level, such as rack level. This is
where our method’s strength will shine: it is designed to be
easily applied to other architectures with little knowledge
and effort to build the model.

VII. CONCLUSIONS

In this paper, we presented a novel framework to charac-
terize thermal behavior of a HPC system. We have evaluated
various prediction models empirically and selected Gaussian
process as the base of our model. Our system predicts the
average operating temperature of different applications to
be scheduled on different parts of the system and selects
the application mapping that reduces the maximum average
temperature. We have discussed two models: the decoupled
method and the coupled method. The decoupled method
uses information on only the target platform, while the cou-
pled method also considers information on the neighboring
components. When application mapping is considered, the
decoupled and coupled methods have 72.5% and 78.8% suc-
cess rates, respectively. This results in a reduction of average
temperature by up to 11.9°C (2.3°C and 2.1°C on average
for the coupled and decoupled methods, respectively).
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